
Introduction

It is well known that growth processes from nuclei are

observed in some solid reactions and crystallizations.

For these processes, isothermal kinetics of growth from

nuclei occurring randomly in bulk, for both of pre-exist-

ing nuclei and nuclei forming concurrently with growth,

were investigated, and the isothermal kinetics had been

established long time ago [1]. This kinetics theory was

expanded to non-isothermal conditions by the present

author [2–4], and the method has been applied to data

obtained by constant rate cooling [2, 5, 6]. For solid re-

actions of inorganic substances the kinetics of this type

was also applied and discussed [7, 8].

Growth processes from surface nuclei have also

been often observed [7], but kinetics of surface nucle-

ation for powdered sample was only dealt with theoreti-

cally [7] and rigorous theoretical considerations on ki-

netics of these processes have not been made. There are

also two cases for surface nuclei; pre-existing nuclei and

nuclei forming concurrently with growth, and geome-

tries of the specimen have also influence on kinetics as

well as dimension of the growth. In this paper three-di-

mensional growth processes from randomly pre-existing

surface nuclei in an infinite plate specimen are theoreti-

cally considered, and fundamental relations are eluci-

dated. The kinetic analysis methods for these processes

are also considered by using the fundamental relations

and described in this paper.

Theoretical considerations

Logics

For isothermal bulk nucleation and growth processes,

useful and elegant theoretical considerations were

made by Evans [9] by using Poisson’s statistical dis-

tribution. In this theory an analogy was used between

the processes under consideration and wave propaga-

tion on pond surface caused by rain. Random rain

drops are compared to random nucleation, and wave

propagation is compared to growth from the nuclei.

However, difference is between them, because the

wave propagation front can pass a particular point at

multiple times but the growth front passes a particular

point only once. Therefore, what we can do is as fol-

lows. Expectancy of number of waves passing over a

particular point is first calculated, and then uncon-

verted fraction, which is not passed over by the

growth front, is obtained by applying Poisson’s statis-

tical distribution. This mathematical method is very

useful and elegant, as it was used in non-isothermal

crystallizations before [2], so that this method is also

applied to the present problem, i.e., three-dimensional

growth from randomly pre-existing surface nuclei in

an infinite plate specimen.

Isothermal growth from nuclei on upper surface

Let us consider isothermal change first for conve-

nience, and for the sake of simplicity nuclei are as-

sumed pre-existing on the upper surface only (not on

the lower surface). First let us consider expectancy of

number of the fronts passing over a particular point,

P, locating at depth of x from the surface. The expec-

tancy and hence the conversion are dependent on the

depth, x, so that distribution of unconverted fraction

along the depth should be considered and then it is in-

tegrated to get the total average conversion of the

specimen, C(t), t being the time. Hereafter, the linear

growth rate constant is expressed by G.

In order to get the above-mentioned distribution

of the unconverted fraction, the specimen was divided

into two layers comparing x with Gt. For x larger than
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Gt, the expectancy, E(x, t) at the time, t, is zero, be-

cause the growth front has not yet reached the point.

Namely,

E(x, t) = 0 for x�Gt (1)

The unconverted fraction at the point, P (or at

the depth of x), U(x, t), is also the unity.

U(x, t) = 1 for x�Gt (2)

For Gt larger than x, the growth front from nuclei

can reach the particular point, P. The farthest point,

Q, from which the front can reach the point, is located

at Gt distance far from the particular point, P, and the

point, Q, is on the surface. Thus, these nuclei, which

can send the front to P by the time, t, occur within a

circle; and its center, O, is the crossing point at which

the perpendicular line from the point, P, crosses the

surface, while the radius, r, is equal to the square root

of (G2t2–x2), because a triangle OPQ is a right-angled

triangle. Then

E(x, t) = N�(G2t2–x2) for x�Gt (3)

where N is density of nuclei on the surface. The un-

converted fraction, U(x, t) can be calculated by apply-

ing Poisson’s statistical distribution.

U(x, t) = exp {–E(x, t)} for x�Gt (4)

Namely,

U(x, t) = exp {–�N (G2t2–x2)} for x�Gt (5)

By integrating U(x, t) from x = 0 to d, d being the

thickness of the specimen, we can get total average

unconverted fraction of the specimen.

When the growth front does not reach the rear

surface (Gt�d),

1–C(t)=[d–Gt+
0

Gt

� exp{–�N(G2t2–x2)}dx]/d (6)

= {�1(Gt)exp(–�NG2t2)+d–Gt}/d for Gt�d (6')

where

�1(u) =
0

u

� exp(�Nx2)dx (7)

After the growth front reaches the rear surface

(Gt�d),

1–C(t) = [
0

u

� exp{–�N(G2t2–x2)}dx]/d (8)

= �1(d)exp(–�NG2t2)/d for Gt�d (8')

Isothermal growth from nuclei on both surfaces

For this growth process we can get fundamental equa-

tions by modifying the above equations. We should

take into accounts of growth from the rear surface to-

gether with the growth from the upper surface, so that

the specimen is divided into two plates of the same

thickness. The above equations need modification.

When the growth fronts do not reach the central plane

of the specimen (Gt�d/2), Eqs (1) and (2) hold for

Gt�x�(d–Gt) (central part), and Eqs (3), (4) and (5)

also hold for x�Gt and (d–x)�Gt.
Therefore,

1–C(t) = 2[d /2–Gt+
0

Gt

� exp{–�N(G2t2–x2) }dx]/d

for Gt�d/2 (9)

= 2{�1(Gt)exp(–�NG2t2)+d/2–Gt}/d for Gt�d/2 (9’)

1–C(t) = 2[
0

d/ 2

� exp{–�N(G2t2–x2)}dx]/d

for Gt = d/2 (10)

= 2�1(d/2)exp(–�Nd2/4)}/d for Gt = d/2 (10’)

When the growth fronts pass over the central plane at

d/2, we should take into accounts of the growth front

from both of the surfaces.

For the case Gt is larger than d/2 but smaller than

d (d/2�Gt�d), we should consider three layers. For the

layer where x and (d–x) are smaller than Gt
(d–Gt�x�Gt, the central part of the specimen), the

growth fronts from the both surfaces pass over, so that

the two expectancies are added. Therefore

E(x, t) = �N[(G2t2–x2)+{(G2t2–(d–x)2)} (11)

U(x, t) = exp[–�N (2G2t2–2x2 + 2xd–d2)]

for (d–Gt )�x�Gt (11’)

But for the other two layers, in the other word for

the other range of x, the growth front reaches from only

one surface, either from the lower surface or from the

upper surface, so that Eqs (3), (4) and (5) hold.

Thus by integrating these three layers we have

1–C(t) = 2{�1(d–Gt)+�2(d–Gt)}exp(–2�N G2t2)/d

for d/2�Gt�d (12)

where

�2(u) =
u

d/ 2

� exp{�N(2 x2–2 dx–d2)}dx (13)

After the both growth fronts reach the surfaces

(d�Gt), we get he following equation by integrating

Eq.(11) from 0 to d.

1–C(t) = 2{�2(0)}exp(–2�N G2t2)/d for d�Gt (14)
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Expansion to non-isothermal conditions

The quantity of temperature dependence is only the

growth rate constant, G, in the processes under con-

sideration, and hence the temperature dependences of

the all above kinetics equations are governed by this

single quantity, so that expansion of these isothermal

equations to the non-isothermal equations can be

done by simply replacing Gt by G0�. The symbol, �,

expresses the generalized time [3] defined by the fol-

lowing equations.

G0� = G0

0

t

� h(T) dt (15)

where G0, T and h(T) are constants, the temperature

and a function expressing the temperature depend-

ence of the growth rate constant, respectively. In

other words, the growth distance of the front is Gt in

the isothermal processes and it is G0� in the non-iso-

thermal processes, as is seen in Eq. (15). The other

quantities in the non-isothermal processes are all con-

stant and quite the same as in the isothermal pro-

cesses, and they are not influenced by the thermal his-

tory of the specimen under observation. This simple

replacement is valid only for the pre-existing nuclei

and not for the concurrently forming nuclei where the

situation is quite different [4], because two tempera-

ture dependent quantities are involved, i.e., the

growth rate constant and the nucleation rate constant.

Discussions

By insight into the above equations we can get some

useful relations for kinetic analysis of thermo-

analytical results of this type of processes. As easily

seen, the thickness of the specimen has much influ-

ence on the process. This point should also be taken

into accounts in application of the above results to the

kinetic analysis.

Before the growth front reaches the rear surface

(in the growth from the upper surface) or the central

plane (in the growth from the both surfaces), the abso-

lute value of the conversion is not dependent on the

thickness (Eqs (6’) and (10’)). Therefore when we ob-

serve crystallization of this type for specimens of dif-

ferent thickness by differential scanning calorimetry,

for instance, the heat evolution is the same irrespec-

tive of the difference in the thickness, if the area of the

surfaces is equal to each other. The heat evolution for

the thinner specimen deviates in the earlier stage from

this same heat evolution, when the growth front

reaches the rear surface or the central plane in this

specimen. The thicker specimen deviates in the later

stage. The situation is the same for mass loss in solid

reaction of this type. This is typical to the processes in

which the processes start at the surface, and diffu-

sion-controlling processes is another example. This

behavior can be used for identification of the process

and also for estimating the growth rate.

After the growth front reaches the rear surface or

the central plane in the growth, this situation changes,

and observed results are dependent on the thickness.

Relations useful for kinetic analysis in this stage are

Eqs (8’) and (14). The following relation can be used for

results of specimens of the same thickness. When

ln{1–C (t)} is plotted vs. the square of the time, t2, we

get a linear plot, but this linear plot has an intercept, so

that the plots are similar to the Avrami plots but it is

somewhat different because of the intercept. The fol-

lowing point is also another difference. The exponent 2

means the three-dimensional growth in this process,

while the exponent 2 is the evidence for the two-dimen-

sional growth for the growth by pre-existing bulk nuclei

and for the one-dimensional growth by random bulk nu-

cleation, as Avrami showed clearly [1].

For whole range of the process, Gt or G0� is a

single quantity governing the rate of the process.

Therefore, Friedman - Ozawa plot [10] (plot of loga-

rithm of the rate of the process vs. the reciprocal abso-

lute temperature at a given conversion) for results us-

ing the specimen of the same thickness gives a plot

similarly to the Arrhenius plot, and the temperature

dependence of the growth rate constant can be ob-

tained. When the plot is linear, we can get the activa-

tion energy of the process.

Furthermore, Ozawa - Flynn - Wall plot [11, 12]

(plot of logarithm of the heating rate vs. the reciprocal

absolute temperature at a given conversion) and

Kissinger - Sunose - Akahira plot [13, 14] (plot of log-

arithm of the heating rate by the square of the absolute

temperature vs. the reciprocal absolute temperature at a

given conversion) can also be applied, but only for re-

sults obtained by heating and for the process of

Arrhenius type temperature dependence. If the plot is

not linear or if the obtained activation energy is de-

pendent on the conversion, the process under observa-

tion is not the process in which a single elementary

process is involved and the temperature dependence of

the rate constant is not the Arrhenius type.

If the temperature dependence, especially the ac-

tivation energy, can be elucidated, we can get an ex-

perimental master curve by plotting the conversion

vs. the generalized time [11]. See Eq. (15). Further-

more, when the generalized rate, i.e., dC(t)/d�, is plot-

ted vs. the generalized time or C(�), we can get an-

other experimental master curve, where dC(t)/d� is

equal to dC(t)/dt exp (Ea/RT), Ea, R and T are the acti-

vation energy, the gas constant and the absolute tem-

perature, respectively. If we could get a smooth mas-

J. Therm. Anal. Cal., 82, 2005 689

KINETICS OF GROWTH FROM PRE-EXISTING SURFACE NUCLEI



ter curve with small scattering, it is an evidence for

the facts that the model described in this paper is valid

for the process under observation.

Because the above Evans’ mathematical method

is very elegant and useful, theoretical consideration

for other types of growth process from surface nuclei

can be made, similarly to the above-mentioned

derivation.
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